• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

PRESSLED

Your Leading News Source

PRESSLED
Your Leading News Source

  • Home
  • BUSINESS
  • MONEY
  • POLITICS
  • REAL ESTATE
  • US
  • Meet the Reporters
  • About/Contact

Unveiling what governs crystal growth

May 26, 2021 by Staff Reporter

IMAGE: Schematic of microbeam surface X-ray scattering during growth of gallium nitride crystal at high temperature.
view more 

Credit: (Image by Argonne National Laboratory.)

With brilliant colors and picturesque shapes, many crystals are wonders of nature. Some crystals are also wonders of science, with transformative applications in electronics and optics. Understanding how best to grow such crystals is key to further advances.

Scientists from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, along with three universities, have revealed new insights into the mechanism behind how gallium nitride crystals grow at the atomic scale.

Gallium nitride crystals are already in wide use in light-emitting diodes, better known as LEDs. They might also be applied to form transistors for high-power switching electronics to make electric grids more energy efficient and smarter. The use of such “smart grids,” which could better balance high power within the overall system, might prevent people from losing power in severe storms.

“This work is a great example of the importance and power of probing a material while a process is underway. Quite often when we use such probes to study processes like synthesis, we find the story to be more complex than we originally thought and counter to conventional wisdom.” — Matt Highland, X-ray Sciences division, Argonne National Laboratory

The same technology could also make individual homes more energy efficient. And it could find use in optical communications, where lasers transmit information. Such information transfer can be more precise, faster and more secure than current capabilities.

Because of these diverse applications, scientists worldwide have been working to improve the process for growing gallium nitride crystals.

“Gallium nitride has a more complicated crystal structure than silicon, the typical crystalline material in electronics,” said G. Brian Stephenson, an Argonne distinguished fellow in the Materials Science division. “When you grow this crystal, you thus get more fascinating behavior at the surface.”

At the atomic scale, a growing gallium nitride crystal surface typically looks like a staircase of steps, where every stair is a layer of the crystal structure. Atoms are added to a growing crystal surface by attachment at the edges of the steps. Because of the gallium nitride crystal structure, the steps have alternating edge structures, labeled A and B. The different atomic structures lead to different growth behaviors of the A and B steps. Most theoretical models indicate that atoms accumulate faster on a B-type step, but experimental confirmation has been lacking.

“Because of the high temperatures and chemical atmosphere involved, it is not possible to examine the growth of gallium nitride with a standard electron microscope and test the model prediction,” Stephenson said. For that, the team called upon the Advanced Photon Source (APS), a DOE Office of Science User Facility at Argonne.

The very high energy of the X-rays available at the APS with a beam only a few micrometers wide (beamline 12-ID-D) allowed the team to monitor the rate of gallium nitride growth on the crystal surface steps. These X-rays are an ideal probe since they are sensitive to atomic-scale structure and can penetrate the environment of the crystal at the high temperatures involved, over 1400 degrees Fahrenheit, while it is growing.

“Based on modeling, many had assumed that atoms probably build up faster on the type-B step,” Stephenson said. “Imagine our surprise when it turned out to be step A. This suggests the chemistry of the growth process may be more complicated than previously thought.”

“This work is a great example of the importance and power of probing a material while a process is underway,” added Matt Highland, physicist in the X-ray Sciences division. “Quite often when we use such probes to study processes like synthesis, we find the story to be more complex than we originally thought and counter to conventional wisdom.”

The results have obvious implications for refining the current understanding of the atomic-scale mechanisms of gallium nitride growth. This understanding has important practical implications for design of advanced gallium nitride devices by allowing better control of growth and incorporation of additional elements for improved performance. The findings can also be applied to growth of related crystals, including host semiconductor materials for quantum information science.

This research was supported by the DOE Office of Basic Energy Sciences. It was reported in Nature Communications, in a paper titled “In situ microbeam surface X-ray scattering reveals alternating step kinetics during crystal growth.” In addition to Stephenson and Highland, other Argonne authors include Guangxu Ju, Dongwei Xu (now at Huazhong University of Science and Technology), Eastman and Peter Zapol. University participants include Carol Thompson (Northern Illinois University) and Weronika Walkosz (Lake Forest College).

###

About the Advanced Photon Source

The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

>>>ad: Don't Miss TODAY'S BEST Amazon Deals!

Originally Appeared Here

Filed Under: TECH/SCIENCE

Primary Sidebar

More to See

Lone Star: Texas Tech Kicker Jonathan Garibay on Dallas Cowboys ‘Opportunity’

The Dallas Cowboys have a vacancy - and just one kicker presently on the roster. And he's a familiar face to Texas Tech fans, as it's Jonathan … [Read More...] about Lone Star: Texas Tech Kicker Jonathan Garibay on Dallas Cowboys ‘Opportunity’

Pan Asia Bank appoints Naleen Edirisinghe as COO – Financial News

Pan Asia Bank recently announced the appointment of Naleen Edirisinghe as its Chief Operating Officer (COO) with effect from 26th April 2022 to take … [Read More...] about Pan Asia Bank appoints Naleen Edirisinghe as COO – Financial News

CRE funds invest billions in U.S. real estate

Multiple commercial real estate funds have poured more than $2.5 billion into the U.S. real estate market in recent weeks, Bisnow reports. These CRE … [Read More...] about CRE funds invest billions in U.S. real estate

Privacy Policy | Terms and Conditions | About/ Contact
Copyright © 2022 · PRESSLED · As Amazon Associates we earn commissions from qualifying purchases · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT